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ABSTRACT An advanced finite-volume method (method of 
modified finite volumes) for numerical simulation of flows in 
industrial applications and its implementation in code 
FlowVision is proposed. The method is based on non-staggered 
Cartesian grid with adaptive local refinement and a subgrid 
geometry resolution method for description of curvilinear 
complex boundaries. Semi-Lagrange approach for solution of 
convective transport equation and splitting algorithm for 
solution of Navier-Stokes equations are presented.  

Opportunity of solution of real industrial problems by the 
method of modified finite volumes is estimated. Geometry of 
computational domain is specified by CAD system and is 
imported by FlowVision through VRML or STL file.  

Two different problems was investigated by the proposed 
method. The first problem is an aquaplane of car tire on road 
with water layer, the second -- a combustion of methane in air 
by low NOx burner of power station boiler.  
 

INTRODUCTION The creation of any technical object passes a 
tedious path from idea, via a lot of experiments, up to object 
functioning in compliance with the initial idea. Use of 
technology of computer aided design (CAD) is called to reduce 
the time of creation. The final goal of CAD is to have line-up: 
Idea - CAD - Manufacture - Object. To achieve this goal the 
CAD systems have to predict properties of the projected object. 
Engineering analysis systems perform these predictions. They 
include, for example, analysis of deformations-strains and 
interaction with environment. Use of industrial computational 

fluid dynamics (ICFD) allows to simulate an interaction 
between object and fluids.  

To integrate ICFD in CAD a barrier between them must be 
overcome. The barrier consists in different geometrical objects 
that are operated by CAD systems and methods of 
computational fluid dynamics. Geometry is specified as 
surfaces in CAD, but ICFD methods need volume grid 
generation between these surfaces. 

There are some grid types that differ each other by grid cell 
geometry. Nowadays grids with tetrahedron or hexagon cells 
are most widely used.  

Generation methods for unstructured tetrahedron grid are 
well known and make use of finite element analysis of a 
pressure strain state of technical objects. But accuracy and 
speed of flow simulation on tetrahedron grid are not high in 
comparison with hexagon grids. However automatic generation 
of hexagon grid is a great problem now. 

ICFD application is characterized by a large difference 
between spatial and temporal scales, complex and arbitrary 
object shape and a wide range of physical and chemical 
phenomena. So it is preferably utilized adaptive grids to resolve 
these singularities. On the other hand it has meaning only for 
fast grid adaptation methods.  

A method of modified finite volumes (MMFV) for fluid flow 
simulation is described in this paper. The method is based on 
Cartesian adaptive locally refined grid (ALRG) coupled with 
subgrid geometry resolution method (SGRM) for description of 
curvilinear surfaces. Object shape is represented by a set of 
plane facets. Almost all CAD systems generate facets from their 
inner representation of geometry model, so MMFV can be used 
for the integration with CAD systems. 

Semi-Lagrange approach for solution of convective transport 
equation is used in MMFV. This approach allows to calculate a 
flow in computational domain with moving boundaries and to 
solve problems of interaction between fluid and structure. 

The method of modified finite volumes is being implemented 
by the authors in CFD code FlowVision (Aksenov, Gudzovsky, 
1993; Aksenov et al., 1996a; Aksenov et al., 1996b). Object 
oriented technology was used for creation of the code that 
easily permits to adapt code for different ICFD problems. 
FlowVision works under Windows’95/NT operating system, 
has user friendly interface for specifying task parameters and 
results analyzing. Interface between some CAD systems 
(SolidWorks and ZCAD) was implemented. 

In this paper we present the main features of the method of 
modified finite volumes and its application for two different 
problems -- simulation of car tire aquaplane and gas combustion 
by power station burner. Goal of the investigation is to estimate 
opportunity of solution of real industrial problems by the 
method and opportunity of use of geometrical information from 
CAD system by CFD code.  
 



NOMENCLATURE 
D - the sum of non-convective terms in Navier-Stokes 
equations. 
P - pressure, 
V - fluid velocity, 
Vi

j- volume Ωi
j at the beginning of the time step, 

Vi - volume of the i-th grid cell, 
t - time, 
f - scalar variable, 
$f - auxiliary variable, 

fi - average value of the variable over i-th grid cell, 
f* - reconstructed function, 
Ω - volume that moves with the fluid, 
Ωi - volume Ω from i-th cell at the end of the time step, 
Ω Ωi

j
i jV− intersection of  and  

ρ - fluid density, 
τ - time step, 
 

METHOD OF MODIFIED FINITE-VOLUMES 
 
Subgrid Geometry Resolution Method An adaptive locally 
refined rectangular grid is introduced in computational domain. 
The grid is a collection of grids of different levels with 
rectangular cells. A grid of first level is an ordinary structured 
grid. Each cell of the grid can be subdivided (when adaptation 
occurs) by eight cells of a higher level grid and these cells can 
be subdivided too. The grid information stores as octree in C++ 
database. 
 

Boundary 

Initial grid cell

(a) 

Cut cell 1

(b)

Cut cell 2

Figure 1. Initial grid cell (a) disjoined by facet surface on 
modified finite volumes (b) 

 

Let curvilinear boundary be represented by a set of plane 
facets. A subgrid resolution method is used ‘to fit’ Cartesian 
grid to boundaries and to describe accurately boundary 
conditions. This method is developed in (Aksenov et al., 
1996b). An algorithm of this method consists in four steps. At 
the first step the grid cells intersected by the facets are found 
(Fig. 1a). At the second step initial “parent” rectangular cell is 
cut off by facet surfaces. The parent cell is disjoined on some 
volumes of complex shape bounded by facets and grid cell 
faces (Fig. 1b). At the third step all geometrical information 
which is necessary for approximation of governing equations, is 
determined; that is volume of a new cell, squares of boundaries, 
distances from boundaries to a mass-center of the cell and its 
neighbors. At the fourth step very small cells (those volumes 
are less then 0.2 volume of parent cell) are removed and their 
boundaries are transmitted to neighboring cells.  
 

Solution of the Transport Equation In computational 
hydrodynamics a most difficult problem is a solution of 
convective transport equation. Consider the solution of this 
equation by method of modified finite volumes.  

Let us initially enumerate all finite volumes by index i.
Introduce average value fi of some variable f (component of 
speed, concentration, temperature and etc.) over a grid cell Vi

during time step τ = tn+1-tn

f f t dVi
n n

Vi

= ∫ ( , )x (1) 

 Consider approximate reconstruction operator R(Vi, Vj1, Vj2,
...) of f(x,t) from averages in Vi and surrounding this cell 
neighboring cells Vj

f f ti
R → *( , )x (2) 

 
where f*(x,t) is a reconstructed function. The reconstruction R 
should have property that average of f* equals again fi

f f t dVi
n n

Vi

= ∫ *( , )x (3) 

Different types of reconstruction operator were described in 
(Aksenov et al, 1996b; Aksenov et al, 1993). 

One can write equation for pure convective transport in 
Lagrange form as 

 df
dt

= 0

Introduce a volume Ω( t ) moving with the fluid. Volume Ω
coincides with Vi at the beginning of the time step  

Ω(tn ) ≡ Vi .

Designate the volume Ω at the end of the time step as 

Ω(tn+1 ) ≡ Ωi.



Integration of the transport equation over Ω results in 
 

f t dV f t dV

DdSdt GdSdt
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where SΩ is a fluid boundary of Ω, Sw is a rigid boundary with 
boundary conditions, D and G are diffusion fluxes through SΩ
and Sw respectively. 
 To derive numerical scheme for calculation of fi

n+1 we split 
equation (4) onto convective and non-convective parts and 
approximate them as follows 
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Here $f is intermediate field, variables f(x,t) were replaced by 
its reconstructed functions (2). 
 One can modify (5) to find averages of $f over the grid 
cells. The equation (5) shows a transfer of variable f from the 
cells to their neighbors. Each i-th cell is surrounded by donor 
neighbor cells (value of f transfers from they to i-th cell) and 
acceptor neighbors (value of f transfers from the cell to 
neighbors). Designate an intersection of volume Ωi from i-th 
cell with j-th cell Vj (Fig. 2) as 

Ω Ωi
j

i jV= ∩

Ωi

Vi

Ωi
lΩi

κ

Vm

VlVk

Ωi
m

(a) 
 

Vi

Vi
lVi

κ

Vi
m Vm

VlVk

(b) 
Figure 2. Subdivision of the volume Ω (a) and 

corresponding subdivision of the cell (b) 
 
If j-th neighbor is acceptor then Ω j

i ≠0, if j-th neighbor is donor 
then Ω j

i = 0, but intersection of its own moving volume is not 

zero: Ω i
j ≠0. Covering the i-th cell by Ω-volumes we find $f i

$ ( ( ) ( ) ( ) )f
V

f dV f dV f dVi
i j ki j

i
i
k

= + −∫ ∫∑ ∫∑
1 x x x

Ω Ω Ω

 (7) 

Here index j designates donor neighbors, k -- acceptor 
neighbors. Each volume Ω i

j coincides before beginning of its 
motion with corresponding subvolume Vi

j

Vi
j = Ω i

j (t = tn ) (8) 
 

Now we can write final expression for $f i using equations 
(5), (7) and definitions (3), (8) 
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The volume of integration in (6) is changed on Vi to find fi

n+1.
We get 
 

f V f dV
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where the definition of fi

n+1 (1) was used to write the left hand 
side of (6). 
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Figure 3. Approximation of the cell subdivision 
 

To calculate equation (8) a fast method of constructing of Vi
j

volumes is required. To simplify integration it is desirable that 
these volumes were rectangular. The next method is offered in 
this paper.  

Backward characteristics initially are let off cell vertexes, 
edges and faces ( Fig. 3). Then the rectangular subvolumes Vi

j

are built for characteristics going inside the cell. Each 
subvolume is built by intrusion of its corresponding geometrical 
object (vertex, edge and face) inside cell along characteristic. 
Vertex characteristic-based subvolumes are built first. The 
vertex-based subvolumes are built by intrusion of cell vertex 
inside cell. Then edge-based subvolumes are built taking into 
account existing vertex-based subvolumes. Vectors of this 
intrusion are defined by orthogonal components of edge 
characteristic to cell edges. The face-based volumes are built 
latest taking into account all early built subvolumes. The 
intrusion vectors are defined by orthogonal components of face 
characteristic to cell faces. 
Solution of Navier-Stokes Equations Solution algorithm of 
Navier-Stokes equations was developed for two types of fluid 
flows -- incompressible and weak compressible flow.  

Continuity equation written in Lagrange integral form for 
volume Ω moving with fluid during τ is 

ρ ρdV dV
i iVΩ
∫ ∫= (11) 

Here ρ is a fluid density. Another form of this equation is used for 
compressible flow 

ρ ρn

V

n

V
dV dV N

i i

+∫ ∫= −1 (12) 

where N designates a term in continuity equation 
 N dV dS

V Si Vi

= ∇ ≡∫ ∫τ ρ τ ρV V  (13) 

Here V is fluid velocity field. For incompressible fluid (for tire 
aquaplane modeling) density is calculated from convective 
transport equation (11). For weak compressible fluid (flow with 
combustion) the density is calculated from equation of state, so 

all volume integrals in equation (12) are known and N can be 
defined directly from it.  
 Write Navier-Stokes equation in Lagrange form as 

V V DdV dV
P

dVdt
i iVΩ Ω
∫ ∫ ∫∫− = −

∇
+

ρτ ,

(14) 

Here P is pressure, D is the sum of viscosity stress, gravity 
force and other non-convective terms in Navier-Stokes 
equations.  
 The pressure term in equation (14) is a volume integral 
averaged over time step. This term is approximated by pressure 
integral over volume Ωi at the end of time step. Adding and 
subtracting the same term for pressure but at n time step we get 
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Following an ordinary procedure of solution of Navier-Stokes 
equation we can split equation (15) into two parts by 
introducing intermediate velocity field 

~Vi
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 (17) 

One can see that equation (16) is the transport equation of type 
(4) and this equation can be solved by scheme (9,10) to find 
~Vi field. 

 Derive equation for determination of pressure field at next 
time step Pn+1. A differential analog of (17) is 
 

V Vn
n

n

n

n
P P+

+

+− = −
∇

−
∇1

1

1
~ { }τ

ρ ρ
 (18) 

Use condition ∇ =+V n 1 0 for incompressible fluid, then apply 
divergence operation and Gauss theorem to (18) we get 
equation for calculation of Pn+1 
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Equation (12) is used for compressible flow and we get  
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A finite-difference form of pressure equations (19a),(19b) is a 
discrete Laplace equation. 
 To calculate Vn+1 we have to simply substitute the definition 
of averages in the cell (3) in (18)  
 

V Vi
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∇
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Therefore equations (11-13) are solved the follows algorithm. 
1. Put n=0 and some guess for V0, ρ0 and P0.
2. For incompressible flow: Transport equation (11) is 

solved and ρn+1 is found. For compressible flow: from 
(12) N is calculated 

3. Transport equation (16) is solved and intermediate 
velocity field 

~V is found.  
4. The pressure field at (n+1)-th time step is calculated 

from corresponding Laplace equation (19) by iterative 
methods (conjugate gradients or successive relaxation 
methods). 

5. Afterward velocity averages over finite volume Vi
n+1 are 

found from (20). 
6. Put n=(n+1) if convergence is not reached and go to  

step 2. 
 Note non-staggered grids have well-known pressure field 
oscillations (Patankar, 1980). These oscillations we suppress by 
correction of equation (19). A difference between 2nd and 4th 
order approximation of pressure term is introduced in (19a), 
(19b) according to Armfield (1991). 
RESULTS 
 
Car Tire Aquaplane The solution of aquaplane problem was 
performed for rigid rotated car tire. Influence of protector 
pattern was investigated on tire lift. Analogous task was solved 
by finite-element analysis software (Zmindak, Grajciar, 1997). 
In this solution a body-fitted grid was used. Use of this type of 
grid does not allow to simulate flow around tire with zero gap 
between tire and road, but allows simply to take into account a 
deformation of car tire. 

Figure 4. Tire model with inclined channels of treads.  
 

There are two different tasks with essential different 
mathematical models in aquaplane problem. The first task is 
flow simulation around car tire, the second -- tire deformation. 
More accurate and suitable approach for the first task solution 
is finite-volume method in Euler description, for the second 
task – finite-element method in Lagrange description. 
Nowadays use of homogeneous methods for solution of 
conjugate problems is considered preferable. Use of method 
such as the method of modified finite volumes, which 
compatible through the same boundary description with finite-
element methods, allows to apply each method in its own area 
of advantages. 

 

Figure 5. Grid adaptation for tire geometry 
 

Water and air flow around aquaplaning car tire is governed 
by a system of equations for incompressible fluid which 
includes continuity and Navier-Stokes equations. Equations are 
solved in coordinate system moving with the tire. Tire rotates in 
computational domain with speed corresponding to car velocity. 
Computational domain was bounded a box with dimension 1.5 
m along car motion, 0.1 m in height, 0.8 m along tire axis. 

 

Figure 6. Water surface around the tire with zero inclined 
channels. 

 



Figure 7. Distribution of water velocity in vertical symmetry 
plane. 

 
Numerical simulation of water flows around tire model (Fig. 

4) was performed. Calculation was made for tire with radius 
equals to 33 cm (13 in). The tread of 20 cm wide was specified 
by channels inclined to tire axis. Depth of the channels and the 
water layer on road were equal to 2 cm. All calculation was 
made for car speed 20 m/s (76 km/h). Grid was adapted to the 
tread geometry (Fig. 5). 
 Water surface disturbed by car tire is shown in Fig. 6. Water 
surface was reconstructed from density field as isosurface of a 
density with level equals 700 kg/m3. One can see the two waves 
on the water surface -- bow and stern waves. The water jet 
uploads directly behind the tire and the collapse of the water 
layer behind the jet occurs. 
 Velocity distribution and water surface in different planes is 
shown in Fig. 7 and Fig. 8. Velocity is represented in coordinate 
system linked with road. One can see that water is extruded 
under and before the tire, water behind the tire moves to tire. 
The water has no time to fill in channels of a tire protector and 
the channels partially are filled by an air. It reduces an 
effectiveness of water removing from under a tire and results in 
increasing lifting force. 
 

(a) 
 

(b) 
 

Figure 8. Distribution of water velocity in horizontal plane at 
distance from road equals (a) 1 mm, (b) 21 mm. 

 

Gas combustion in burner A two-stage methane combustion 
is a most effective method for reduction of nitrogen oxide 
emission. A special burner is projected to realize this process. A 
numerical simulation of this burner is presented.  

Fuel mixture flows by two concentric channels in this burner. 
There are a strong swirling flow of premixed fuel mixture in 
internal channel and a straight stream of a pure air in external 
one. 

Mathematical model of physical and chemical processes in 
burner is based on conservation law of mass, energy and 
impulse. For description of turbulent transfer we used 
“standard” Launder-Spalding k-ε model with modifications of ε
- equation near burner axis to describe a strong swirling flow. 
The methane combustion in air is described by one-stage model 
(Volkov, Kudriavtsev , 1979).  

Gas flow simulation in the burner is carried out with and 
without methane combustion. Because of strong swirling flow a 
vortex breakdown takes place on burner axis. There is a region 
of a backward flow for about 2-3 burner diameter D for cold 
flow (Fig. 9a). In combustion case the backward flow region 
reduces up to 0.1D for flow with combustion (Fig. 9b). The 
backward flow is at the flame front and has a role of flame 
stabilizer. 

 



backward 
flow 

(a) 
 

flame 

backward 
flow 

(b) 
 

Figure 9 Distribution of gas velocity in burner and scheme of 
gas flow, (a) without combustion, (b) with combustion 

 

The methane combustion modeling is shown in Fig. 10. 
Results are represented by a flame luminescence that is 
simulated by the rate of fuel decrease. A test work of real 
burner is shown in Fig. 11 for comparison. The comparison 
between computational data and real data indicates on an 
adequacy of constructed combustion model and numerical 
method.  

Figure 10. Flame visualization by rate of fuel decrease. 
 

Figure 11. Combustion of methane by the burner in power 
station boiler (experiment) 

 

CONCLUSION Method of modified finite volumes for solution 
of hydrodynamic equations is presented. The method uses an 
adaptive grid with rectangular cells. Boundary conditions is 
approximated by subgrid geometry resolution method. Semi-
Lagrange method is used for solution of convective transport 
equation. Splitting algorithm is described for solution of 
Navier-Stokes equation. 
 Two different problems was investigated by the proposed 
method. The first problem is aquaplane of car tire on road with 
water layer, the second -- a combustion of methane by low NOx 
burner of power station boiler. Geometry of computational 
domain was specified by SolidWorks CAD system. Geometrical 
information from SolidWorks is imported by FlowVision code 
through facet representation. 
 The methane combustion in high swirling flow produced by 
burner was performed. Gas flow simulation in the burner is 
carried out with and without combustion. The zone of backward 



flow on burner axis is found. When combustion occurs the zone 
is shifted before flame and its size decreases in comparison with 
flow without combustion. This fact was confirmed by 
experiments (Tishin, 1997). 
 Thus opportunity of solution of real industrial problems by 
the method of modified finite volumes was estimated. 
Opportunity of use of geometrical information from CAD 
system by CFD code is shown on an example of solution of two 
problems.  
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