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Numerical Simulation of Car Tire 
Aquaplaning 

Andrey Aksenov, Alexander Dyadkin and Aleksey Gudzovsky1

Abstract.1 Approach to numerical simulation of water and air 
flow around aquaplaning car tire is described. The approach for 
governing equations solving is based on a finite-volume method 
and non-staggered Cartesian adaptive locally refined grid. A 
method of subgrid geometry resolution is proposed for accurate 
description of curvilinear complex boundaries. This method uses a 
presentation of boundaries as a set of plane facets and makes CFD 
code compatible with CAD systems. The described technology is 
implemented in FlowVision code. Some results of simulation of 
car tire aquaplaning performed by FlowVision are presented The 
tire lift dependence on a tread picture is calculated. 

1 INTRODUCTION 

Numerical simulation of water flow around rotated car tire 
is one of the challenging problems for computational fluid 
dynamics (CFD). Main difficulties of the problem are : 
- the presence of three phases - liquid, gas, rigid body - in 
computation domain; 
- the tire motion relatively the computation domain; 
- complex tire shape and large ratio between scales of tire 
diameter (500-1000 mm) and tread channels (2-10 mm); 
- variation of tread surface under loading; 
- motion of free water surface with possible water wave 
breaking down. 
 The adequate numerical method allowing to overcome 
all these difficulties is need to solve the problem. The main 
question is the choice of a grid type. The commonly used 
grids may be classified under non-structured grids (NSG), 
structured curvilinear grids (SCG) and Cartesian structured 
locally refined grids. 
 Geometry of immobile tire may be specified with high 
accuracy by NSG and SCG techniques. But when we need 
to simulate flow around rotated tire we must introduce 
additional numerical technique for description of tire 
motion in computation domain (according to coordinate 
system moving with car). There are two commonly used 
ways: the first is based on grid regeneration at each time 
step of numerical algorithm, and the second - on the using 
of sliding (overlapping) grids. The first way demands a lot 
of processor time for grid regeneration. The difficulties of 
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second way are associated with low accuracy of 
information transfer between overlapping grids. 
 To solve this problem we use unmoved Cartesian 
adaptive locally refined grid (ALRG) coupled with subgrid 
geometry resolution method for description of complex tire 
surface and tire rotation. The advantages of this approach 
are: an operation with arbitrary geometry configuration, a 
fast grid generation, economical using of computer 
memory, fast grid adaptation under geometry and flow 
singularities, compatibility with computer aided design 
(CAD) systems. A gradient method is used for description 
of water free surface. The method is based on accurate 
decision of water phase transport equation by scheme with 
small artificial diffusion. 
 The described technology is implemented in CFD code 
FlowVision [1]. In this paper we present the main features 
of the proposed approach and its application for solving of 
car tire aquaplaning. A task of water column breaking 
down was also solved to determine a precision of a water-
air interface dynamic simulation by FlowVision.

2 METHOD OF SIMULATION 

The CFD code FlowVision [1] was developed as wide-
application tool for study of complex gas/fluid flows by 
means of numerical modeling and computer graphics. 
 The choice of fundamental principles underlying the 
FlowVision code was subjected to achieve the final goal - 
the user must be able to research a flow in arbitrary shaped 
domain containing arbitrary shaped objects with arbitrary 
boundary conditions on its surfaces. 
 Solver of FlowVision code is based on finite volume 
method for solving the 3D Navier-Stokes equations and 
equations for heat and mass transfer. Turbulence is 
modeled by standard k-ε model. Post-processor includes 
different tools for graphical representation of numerical 
results, such as vector (velocity) field visualization by 
vectors in cross sections of domain; scalar (pressure, 
temperature, concentration, etc.) field visualization by 
isolines, color flood in cross sections of domain and 3D 
isosurfaces of any scalar variable; visualization of flow by 
tracers. 
 FlowVision has been comprehensively tested by 
comparison with different experimental and numerical data 
[1-3]. 
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2.1 Adaptive locally refined grid 

For capturing of small details of geometry, high gradients 
of velocities, water-air interface an adaptive local 
refinement of initial Cartesian grid is performed. The 
structure of grid with local refinement is shown in Figure 
1. Resulting grid is written in memory as octree. 
 

x

y

z

0 Refinement Level.

2 Refinement Level.

1 Refinement Level.

3 Refinement Level.  

Figure 1. The structure of locally refined grid 
 

The speed of ALRG generation is higher then ones for 
NSG and SCG traditionally used in CAD systems. The 
ALRG generation method does not produce so-called 'bad 
cells', because of aspect ratio of cells is constant. ALRG 
allows to use simply adapting technique for modelling of 
Navier-Stokes equations. 

There are a few ways to overcome the problem of non-
fittings of Cartesian ALRG to boundaries. It may be solved 
by first order of accuracy when object surface is formed by 
mesh steps. The aliasing effect takes place in this case. 
Higher accuracy may be achieved by local refinement of 
initial grid up to larger level. 

But using high order techniques for boundary 
approximation is more accurate and demands lower 
expense of computer's memory and power. Such the 
subgrid geometry resolution method is described in the 
next section. 

2.2 Subgrid geometry resolution method 

A goal of a proposed subgrid geometry resolution method 
is to overcome the barrier between CAD systems and CFD 
code. All CAD systems can generate the description of 
object surface by set of plane facets. Using of this 
representation allows for CFD code to perceive a geometry 
information from CAD. Moreover in this case the CFD 
code becomes compatible with other CAE systems based 
on finite element analysis. 
 Let the ALGR has given in computational domain. At 
first stage of algorithm the facets intersecting the grid cell 
(Figure 2а) are being found. Then the grid cell is disjoined 
into a set of finite volumes bounded by facets (or facet 
splinters) and cell faces (or face splinters). If the cell does 
not intersect any facet the finite volume coincides with cell. 
A situation when finite volume is bounded by facet splinter 

only is allowable. A finite volume is indexed by i and is 
designated as Vi.
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Figure 2. Subgrid geometry resolution 
a) finding of facets intersected ALGR cell 

b) disjoining of cell into finite volumes 
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Figure 3. Displacement of i-th finite volume along 
backward characteristics 

 
Introduce a volume Ωi built on backward characteristics 

goes from vertexes of Vi (Figure 3). Sides of Ωi is 
designated as b. Sides b of Ωi strictly correspond to sides s
of Vi.

Let write the fluid dynamics equations in Lagrange form 
and integrate its over moving volume which at time 
moment tn coincides with Ωi. At time tn+1 = tn+τ the volume 
will coincide with Vi

f
V

f dV G Di
n

i

n
g

gi

+ = + +∫ ∑1 1
( )
Ω

(1) 

where f i
n+1 is average of calculated variable f (component 

of  speed,  concentration,  temperature and etc.)  over  Vi at 
tn+1 

f f dVi
n n

Vi

= +∫ 1 (2) 
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Other designations in (1) are: D - average of non-
convective terms in equation (may be volumetric source, 
diffusion term) over the moving volume during τ, g - finite 
volume’s side formed by the j-th facet splinter, Gg - flux of 
variable f through g during τ. For mixed Dirichlet-
Neumann boundary conditions Gg is given by 
approximating expression 

G G f s t g A B f fg j
g

j j i
n

w g= ≈ + −∫∫ ( ) ( ( ) /∂ ∂ τ δ
τ

) , 

where Gj(f) is a flux of f from j-th facet boundary, Aj and Bj
, fw - coefficients of a boundary condition on j-th facet, δg -
half of characteristic distance from part of facet splinter up 
to other finite volume’s sides in normal vector direction to 
a splinter (Figure 2b). 
 The description of the first term in right hand side of (1) 
which expresses a convective transfer of variable f will be 
done below. 

2.3 One dimensional advection simulation 

To build a numerical scheme for calculation of 3D 
convective transfer let initially consider 1D transfer of 
scalar f with velocity u(x).  
 Introduce a grid with constant space step 

xi+1/2=ih, i=0,1,...,N

where i-th finite volume are bounded by faces with 
coordinates xi-1/2, xi+1/2. Volume Ωi corresponded to Vi is 
bounded by faces with coordinates xi-1/2-δi-1/2, xi+1/2-δi+1/2.
Here δi+1/2 is a length of a backward characteristic which 
goes from point xi+1/2 at time tn+1 to time tn and is 
determined by equation 

τ
δ

=
+ +

+

−
∫

dx
u xx

x

i i

i

( )
1/ 2 1/ 2

1/ 2
 

In first approach we may consider δi+1/2=τui+1/2.
The one dimensional advection equation written in 

Lagrange form is 

f
h

f x t dxi
n n

x

x

i i

i i
+

−

−
=

− −

+ +

∫1 1

1/2 1/2

1/2 1/2

( , )
δ

δ
(3) 

Equation (3) shows that the problem of solving of 
advection equation is transformed to reconstruction of 
function f(x,t) from its averaging inside finite volumes. The 
monotonic reconstruction of function leads to scheme with 
monotonous behavior. A level of scheme artificial diffusion 
is determined by accuracy of f(x) reconstruction.  

Schemes created on the base of the Lagrange 
representation of advection equation (3) is stable at all time 
steps τ. Accuracy of time-stepping is depended on accuracy 
of characteristic length calculation. 

Consider further different linear reconstruction inside 
finite volume. Various types of linear reconstruction inside 
finite volume are shown in Figure 4. The reconstruction I 
results in well known upstream scheme of the first order of 
approximation. The reconstruction II has an inclination f(x)
inside Vi calculated from central finite difference 
derivation. This reconstruction has the second order of 
approximation, but is nonmonotonous and has to result in 
nonmonotonous scheme. 
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Figure 4. Types of linear reconstruction f(x): 
I f(x)= fi ;
II f(x)= fi+0.5(fi+1- fi-1)(xi-x)/h; 
III f(x)= fi+fxi(xi-x)/h;

where fxi = min (fi+1- fi , fi- fi-1) when fi+1- fi-1>0 
or fxi = mах(fi+1- fi , fi- fi-1) when fi+1- fi-

1<0; 
IV linear reconstruction with additional point. 

 
Monotonous reconstruction III is produced when 

inclination of f(x) inside Vi is calculated from two 
derivations at the both sides of the finite volume. 

More complex linear reconstruction with additional 
point (marked as IV) is used in this paper. This 
reconstruction is 

f x
f f x x x x l
f f x x x x l
ri xri i i

li xli i i
( )

( ),
( ),

/ /

/ /
=

+ − ≥ −
+ − ≤ −
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


+ +

− +

1 2 1 2

1 2 1 2

 
(4) 

where l - is a distance from xi+1/2 to additional point (Figure 
4), fri , fli - values of function reconstructed at left and right 
sides of finite volume 

f f f f f f

f f f f f f

ri i i i i i
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Values fri, fli are limited by averages in adjacent volumes: 
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Distance l and derivations at left and right sides of finite 
volume fxri , fxli equal to 

l f f f f
f f f l
f f f l

i li ri li

xri ri i
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= − −
= −
= − −
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( ) /
( ) / ( )1

Leonard’s test problem [6] was solved to verify an 
accuracy of the schemes. The test consists in simulation of 
one dimensional motion of three test profiles (step, sine-
squared and semi-ellipse) with constant velocity. Figure 5 
shows the comparison of precise solution and calculated 
profiles by scheme produced by reconstruction I-IV after 
120th time step at Courant number Cur = 0.5. 
 

Figure 5. The simulation of motion of three test profiles 
by schemes I-IV (U=1, Cur=0.5, t=0.6) 

 
One can see that the schemes I and III have inadmissible 

large artificial diffusion, scheme II is nonmonotonous as 
was predicted above. The scheme with reconstruction IV is 
the most accurate and has monotonous and small artificial 
dissipating properties. 

2.4 Three dimensional transport 
simulation 
Return to equation (1) for 3D transport. To remove a 
limitation on τ let disjoin the equation (1) in two equations 

$

$ ( ( ) ( ))

f
V

f dV

f f
V

G f D f

i
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i
g

n
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n

i

=

= − +

∫

∑+ + +

1

11 1 1

Ω

The first equation (5) describes pure advection of scalar f
and stable at any τ. The second equation describes 

diffusion process and volumetric sources (term with D), 
boundary effects (term with Gg). Using implicit form of (6) 
allows to eliminate the time step restriction for small finite 
volumes. 
 Three-dimensional function f(x) in (5) is reconstructed 
from superposition of three one-dimensional 
reconstructions  f n,k(xk) along xk axis of coordinate system 

f f x fn n k
k

k
i
n( ) ( ),x = −

=
∑

1

3
2 (7) 

Equation (6) is solved afterward finding of auxiliary 
scalar $f . This equation is written in implicit form 
relatively f n+1 and is calculated by standard methods such 
as successive over relaxation method. 

2.5 Governing equations solving 

Water and air flow around aquaplaning car tire is governed 
by system of equations for incompressible fluid which 
includes continuity and Navier-Stokes equations. To 
consider the algorithm of the equations solving again write 
ones in Lagrange integral form for volume Ω moved with 
fluid during τ

ρ ρ

ρ ρ
τ

dV dV

dV dV Pd dt
V

V S

i i

i i

∫ ∫

∫ ∫ ∫∫

=

− = − +
Ω

Ω
V V S D

,

Here S is a surface of the volume Ω, V is a fluid velocity 
field, P - pressure, ρ - fluid density, D is the collection of 
terms in Navier-Stokes equations with viscosity stress, 
gravity force, and the like. 
 Density ρ is calculated from continuity equation using 
scheme (5-7) 

ρ ρn
V

dV
i

n

i

+ = ∫1 1
( )x

Ω
(8) 

 The algorithm of the method for solving of this 
equations is follows  

(5)

(6)
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At first stage (9-10) finite volume's averages of 
intermediate velocity field V are being found. Then 
auxiliary averages over face splinters over finite volume are 
calculated. The pressure field at n+1-th time step is 
calculated at next stage (12). This equation follows from 
(14) and the fact that for incompressible fluid an integral of 
velocity over closed surface equals to zero. At final stage 
(13) and (14) velocity averages over finite volume Vi

n+1 
and over its face's splinters Vs

n+1 are calculated. 
 Because of a non-staggered grid is used for calculations, 
well known pressure field oscillations exists [4]. This 
difficulties is overcomed by using of Armfield’s idea [5] 
that consist in introduction a difference between 2nd and 
4th order approximations of term in (12) with pressure. 

3 RESULTS 

3.1 Collapse of water column 

To evaluate an accuracy of the method the collapse of a 
water column was numerically simulated. In order to 
compare our solution with experimental data obtained by 
Martin and Moyce [7], the water column is chosen to be 
H×H square column (H=5.715 cm=2.5 in). The width of a 
channel equals to 3H. A grid 10x30 without adapting has 
been used for collapse simulation. 

At time t=0 water column starts to collapse owing to 
gravity g=9.8 m/s2. For convenience, the dimensionless 
time and length are defined as T=tv(g/H) and x/H, 
respectively. The length x is measured from left side of 
water column in Figure 6. 
 The profile of water surface at different time moments 
with step ∆T=0.3 is shown in Figure 6. After impacting 
with right side of the channel the water wave moves in 
opposite direction and some time later is break down. 
 A comparison of calculated and measured in [7] water 
front positions in relation to time is presented in Figure 7. 

 A good agreement between simulation and experiment 
is proved a capacity of the method to calculate free-surface 
problems. 

3.1 Simulation of car tire aquaplaning 

Numerical simulation of water flows around tire model 
shown in Figure 4 was performed. All calculations was 
made for tire with radius equals to 33 cm (13 in). The tread 
of 20 cm wide was specified by channels inclined to tire 
axis. The inclination angle φ was equal to 00, 12.50, 250.
Channels depth and the water layer on road were equal to 2 
cm. All calculation was made for car speed 20 m/s (76 
km/h). 

x

3H

H

H

Figure 6. Predicted water surface during column collapse 
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Figure 7. Front position x/H versus time T=tv(g/H) 
during collapse of water column 

 

a) b) 
 

Figure 8. Tire model with inclined channels of treads.  
a) full view, b) calculated part 

 

Figure 9. Locally refined grid near tread 
 

Figure 10. Water surface around the tires  
for φ = 00 (a), 12.50 (b), 250 (c) 

 
ALRG was adapted to the tread geometry. The resulting 

locally refined grid near tread with three refinement levels 
is shown in Figure 5. 
 The water surface disturbed by car tire is shown in 
Figure 6. Water surface was reconstructed from density 
field as shape of constant level density equals 700 kg/m3.
One can see the two waves on the water surface - bow and 
stern waves. There are the water jet (spray) uploaded 
directly behind the tire and the collapse of the water layer 
behind the jet. 
 The lift as a function of φ is shown in Figure 11. The 
increase of φ up to 25o reduces the lift by 36%. As shown 
in Figure 11 the breaking of the tire follows to increase of 
the lift up to 30% for tread φ = 00.

Figure 11. The tire lift against tread channels inclinations 
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