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Abstract: This work focuses on detailed descriptions of DC discharge properties in supersonic airflow
and its applicability in combustion simulations. Due to the complexity of obtaining most of the data
in the experiment, our experimental research was supplemented by a numerical simulation. Two
packages, i.e., FlowVision (fast commercial CFD for 3D engineering) and Plasmaero (2D scientific code
developed in JIHT RAS for MHD tasks), were used for modeling the arc DC discharge in a supersonic
flow at Mach (M) = 2. Both will be considered for further use in plasma-assisted combustion modeling,
so it is important to validate both codes using experimental data from the model configuration with
discharge. Axisymmetric geometries of experiments with two coaxial electrodes located parallel
to the flow were chosen to avoid the appearance of the current channel part perpendicular to the
flow and the corresponding discharge pulsations. Such geometries allow performing numerical
simulations in 2D formulation, making it possible to compare the results obtained in the experiments
and calculations. As a result of this work, two-dimensional distributions involving temperature,
current density, chemical composition, and other discharge and flow parameters were obtained for
arc DC discharges 0.5–7 A in a supersonic flow (Pst = 22 kPa, T = 170 K, V~500 m/s). Good qualitative
agreement between experimental and numerical results was achieved. The production of a significant
amount of atomic oxygen, which accelerates combustion, was noted.

Keywords: DC discharge; arc discharge; supersonic flow; experiment; numerical simulation

1. Introduction

Globally, researchers are studying the interaction between electrical discharge and
a high-speed flow, in relation to two major problems: (1) plasma aerodynamics/plasma
flow control [1–3] and (2) mixing problems [4–6], ignition, and flame stabilization [7,8] in a
supersonic flow using discharge, known as plasma-assisted combustion [9], which is one
fundamental in the development of a ramjet or a scramjet engine [10,11].

The first group of tasks consists of numerous research studies on subsonic flow devoted
to boundary layer transitions and separation control. Fundamental research on plasma
actuators, including the most popular DBD, continues; moreover, new (and previously
unaccounted for) properties are being discovered [12]. In the applied works, features on
the influence of flow are presented, for example, in the work by [13], a mechanism of
hydrodynamic noise generation in a boundary layer by a dielectric barrier discharge was
considered, which can be key in further attempts to influence the boundary layer with this
type of actuator.

The second significant part of the research on plasma aerodynamics is related to the
control of the shock-wave structure in a supersonic flow. It is well-known that the pulsed
energy input in the discharge is accompanied by the birth of a shock wave and can affect
the structure of the external flow [14,15] or the flow in the channel [16]; in this case, the
duration of the energy input can be less than a microsecond, and the restoration of the
flow structure requires more than 100 µs. When controlling the flow near the compression
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surface (in the air intake), the energy input from the plasma actuator can be pulsed [17], or
constantly operated, while in both cases, the flow structures change significantly, allowing
for optimizing the operation of the air intake in an off-design mode [18]. The change in
the flow structure when switching the plasma actuator takes several hundred µs for a
characteristic size of the observation zone of about 100 mm [19].

One of the key options for a plasma actuator in a supersonic flow is a direct current
discharge (or an arc discharge), which is used to control the flow [18,19] and in problems
related to plasma-assisted combustion [8,20,21]. In the case of combustion, the energy
input to the discharge, in recent works [21], is several percentage points of the power
released during combustion. Therefore, this approach looks promising. Studies on the
properties of such a discharge in a supersonic flow began in the 1950s and 1960s [22], with
the development of diagnostic tools and computational–theoretical approaches; research
continues on the properties of the discharge [23], various effects of gas jets [24], and
magnetic field [25] influences on the discharge. In the vast majority of studies, a discharge
of a complex shape is considered, which makes it difficult to analyze and interpret the
results. Therefore, the axisymmetric statement of the discharge problem, without a part of
the current channel perpendicular to the flow considered in this paper, is relevant.

To obtain complete spatial distributions of such properties, such as velocity, pressure,
and temperature in a supersonic airflow, it is useful to perform a numerical simulation.
There are many approaches to consider discharge plasma in a numerical simulation. The
simplest way to simulate the impact of the discharge on the flow, which does not include
MHD (magnetohydrodynamic) equations, is to use a volumetric heat source [19,26]. How-
ever, this method has serious limitations. It is difficult to set the real spatial distribution
of the energy input and to take into account the change of the discharge shape or length
that takes place in the experiment and, as a result, makes it interact with the flow of the
fuel–air mixture. The discharge approximately follows the flow lines, which is clearly
seen in the Supplementary Material of the article [27]. Complex modeling of the electric
discharge was carried out earlier using various electrodynamic models. To simplify the
model, two-dimensional modeling is often used. In [28,29], the discharge cross-section
was simulated for a case involving a discharge motion under a constant magnetic field. To
obtain the spatial distributions of the discharge characteristics in a supersonic flow, the
problem was formulated in [30] in the axisymmetric approach for low currents. In [31], a
numerical simulation of a configuration, in which a fast-moving arc discharge appeared
between two extended electrodes, called a rail plasma actuator, was performed. The object
of the simulation was the repeated breakdown of the discharge; however, all calculations
were performed in the plane of the discharge. A re-breakdown (or restrike) effect appears
if a current channel has a part that is perpendicular to the flow; in such a situation, it is
important to provide a restrike model [32]. However, this significantly complicates the
simulation and affects the stability of the parameters in the experiment.

In this work, the re-breakdown (or restrike) effect was not considered for simplifica-
tion of the discharge geometry or further comparison of the experimental results. Using
different approaches, a straight 30 mm long discharge was used to obtain a detailed de-
scription of the DC discharge properties in supersonic airflow. Axisymmetric geometries of
experiments with two coaxial electrodes located parallel to the flow were chosen to avoid
the appearance of the current channel part perpendicular to the flow and corresponding
discharge pulsations. Such geometries allow performing numerical simulations in 2D
formulation, making it possible to compare the results obtained in the experiments and
calculations. Two packages, i.e., FlowVision and Plasmaero, were used for modeling the
arc DC discharge in a supersonic flow at Mach (M) = 2. FlowVision was applied here to
make a 3D simulation with an unsteady DC discharge. Plasmaero was applied due to the
detailed plasma chemistry available in the discharge simulation.
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2. Experimental Setup and Measurement Methods

To obtain detailed information about the local characteristics of the discharge and
gas flow near the discharge, we considered a direct current discharge in the simplest
formulation: the core of a supersonic flow (i.e., far from the walls), in a configuration
between two coaxial electrodes located parallel to the flow (to ensure the absence of
the current channel perpendicular to the flow). Such a configuration was realized in an
experiment in a supersonic wind tunnel IADT-50 of the JIHT RAS. A discharge with a
current of 0.5–7 A was ignited in the core of the supersonic flow (M = 2, V~500 m/s,
Tg = 170 K, Pst = 22 kPa) between thin coaxial electrodes with a distance (from the ends of
the electrodes) of 30 mm. The control of the current was conducted by replacing the ballast
resistance R1. The geometry of the experiment was chosen considering the 2D simulation
approach. In the chosen configuration, two electrodes were installed coaxially—the first one
(upstream) was steel with a diameter of 1 mm, the second (downstream) was copper (2 mm);
the third (initiating) electrode was curved, and was intended for the initial breakdown,
i.e., the start of the discharge, which ignited in the form of a loop carried by the flow; when
it reached the downstream electrode, it switched to the longitudinal mode. The geometry
of the third electrode ensured the minimum intensity of the shock wave incident from the
electrode into the discharge operation region. Thus, the presence of the third electrode
could be neglected in the simulation. Such a configuration was recognized as generally
successful and satisfied the wishes of the theoretical group. However, at high currents
(4–6 A), a tip of the front steel electrode heated up strongly and was destroyed, which
hampered the spectroscopic measurements. Therefore, the next configuration was made
using the upstream tungsten electrode, on which experiments were performed at high
currents. In this case, no destruction of the electrode was observed, which was recorded by
a high-speed camera. The electrical circuit and the basic configuration of the electrodes are
shown in Figure 1.
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Figure 1. (a) Scheme of discharge supply and electrical measurements. (b) The geometrical configu-
ration of electrodes. 1—upstream, 2—downstream, and 3—initiating electrode.

The discharge was powered from a constant voltage source of 5 kV through a ballast
resistance that regulated the discharge current. In the experiment, electrical measurements
were performed, the discharge current varied in the range of 0.5 to 6 A, and the obtained
discharge voltage was, respectively, from 900 to 280 V. During the experiments, high-speed
shooting of the discharge was carried out on a Photron S9 camera with an exposure of
1–2 µs, the features of the flow were recorded using a high-resolution shadow system with
an exposure of 100 ns (based on laser beam pulse). The spectra of the optical emission
of the discharge were obtained in the range of 287–367 nm using a spectrograph based
on an Oriel MS 257 monochromator (1800 lines/mm grating) and an Andor DU420 CCD
camera. The temperature was determined from the optical emission of a thin cross-section
of the discharge. With the help of a rotary mirror, it was possible to determine the temper-
atures at different points along the discharge. The scheme (of optical measurements and
visualization) is shown in Figure 2.
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Figure 2. Scheme of optical measurements and visualization. 1—supersonic flow; 2—laser beam;
3—lens, F = 1.5 m; 4—electric discharge DC; 5—mirror; 6—transparent window; 7—knife-edge;
8—high-speed camera; 9—rotating mirror for spectrograph; 10—monochromator; 11—spectrum
camera; 12—high-speed camera.

3. CFD Simulation in FlowVision
3.1. Equations

FlowVision is a commercial CFD code [33] in which the one-fluid model (MHD
approximation) of electrodynamics was recently added by developers. This CFD code
uses the 3D URANS approach and includes standard turbulence models. The turbulence
model was disabled to be closer to the capabilities of Plasmaero software. Computations in
FlowVision used the finite volume method and were performed using a solver of linear
systems based on the algebraic multigrid (AMG) method. Calculations could be performed
in parallel mode on multi-core systems and supercomputers. Second-order discretization
schemes were applied to solve aerodynamic problems. Additional information could be
found in the FlowVision user manual [34].

The electrodynamic model we used is described by the following equations:

∇ · j = 0
j = σE

E = ∇ϕ,
(1)

Joule heat is calculated as:

QJoule = j · E = σE2, (2)

In the implementation of the EHD process, it was supposed that dielectric permeability
did not depend on the density of the medium. Boundary conditions (electric potential and
current density) were used for the electrodes. These boundary conditions were set with the
aid of:

ϕb = ϕext,
(

∂ϕ

∂n

)
b
=

j
σ

, (3)

For the numerical simulation of an electric discharge in an air flow using a single-
fluid model, it is necessary to know the thermodynamic characteristics and air transfer
coefficients. In addition, the discharge temperature can reach about 8000 K at atmospheric
pressure, so the physical characteristics of the gas must be known in a wide range of
temperatures and pressures. The temperature dependencies of thermal conductivity λ(T)
and specific electrical conductivity σ(T) are especially important for modeling the discharge
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channel. In the article, we used data on the physical characteristics of air from [35], where
the calculated values were adjusted according to closed forms. Their ranges were: air
at pressures of 0.01–100, atmosphere and temperature at 50–60,000 K, which are several
times higher than the value ranges required for the calculations. Copper was used as the
electrode material, the physical characteristics of which were loaded from the FlowVision
Standard Library of Substances. The approach described in this subsection was previously
tested to solve the 3D task with discharge in airflow [36].

3.2. Calculation Domain

The flow parameters and the geometry of the problem in the calculations were iden-
tical to the experimental one. For the simulation of longitudinal axisymmetric electric
discharge, a cylindrical sector with a radius of 35 mm, a height of 70 mm, and an angle of
3.6° was used as the calculation domain, and the task was considered in the 2D approach.
The electrodes were cylindrical with conical ends. Initial and inlet boundary conditions
corresponded to the experiment. At the exit from the computational domain, the free outlet
boundary condition was used. On the side, faces of the sector symmetry boundary condi-
tions were used. The remaining face, which is on the top of Figure 3, had non-reflective
boundary conditions.
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The input and output faces had zero gradient boundary conditions for the potential.
The walls of the electrodes had boundary conditions that ensured the continuity of the
electric current. The boundary conditions that were set at the far ends of the electrodes were
responsible for direct currents. Therefore, for the front electrode, the boundary condition
was set to a constant current I = 1 A, 3 A, 5 A, and 7 A with a fixed current density; for the
output electrode, a constant electric potential was equal to zero. To create a current channel
that connected the nearest ends of the electrodes, the temperature Td = 6000 K was set in a
thin cylinder.

The calculation used an adaptation of a rectangular Cartesian grid. The adaptation,
according to the Mach number field and the manual adaptation in the selected area, was
used in the project, which resulted in a spatial resolution of 80 cells per 1 mm in both
directions. Thus, to achieve maximum efficiency and minimum calculation times, the
total number of cells was kept at the minimum required level. The maximum number of
calculation cells in the project was approximately 1 × 106.

4. CFD Simulation in Plasmaero
4.1. Equations

The Plasmaero software package was developed at the JIHT RAS and has been used
in the last twenty years for solving hypersonic flows in electric and magnetic fields, in-
cluding re-entry [37,38], plasma aerodynamics, and detailed modeling of different types
of discharges [39]. During its usage—combustion, non-equilibrium, non-quasi neutral
plasma models were implemented. Plasmaero applies the control volume formulation for a
transport equation. The Godunov-type flux scheme [40] is applied to capture gas-dynamic
discontinuities, and the Gauss theorem is used to deal with viscous fluxes. Solvers based
on incomplete Cholesky factorization schemes (with preconditioning and a multigrid) [41]
are applied to process low-magnetic Reynolds number electrodynamic problems. A special
implicit solver is applied to solve stiff ODEs arising from chemical kinetics. Plasmaero uses
structured quadrilateral grids. Typically, first- and second-order discretization schemes
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are applied to solve problems of plasma aerodynamics and/or combustion. The current
implementation of Plasmaero allows solving problems with discharges in a single-core
mode, and aerodynamic problems in a multi-core mode. Additional detailed information
could be found in reference [37].

The problem under consideration obtained the self-consistent solution of the: (I) Navier–Stokes
equations for real chemically-nonequilibrium air, which was supplemented by a source term
in the energy equation to take into account the Joule heat release; (II) a kinetic model of
ionized air in a strong electric field (up to several hundreds of Td), with 11 components
(N2, O2, NO, N, O, N2+, O2+, NO+, N+, O+, e) and 97 thermochemical reactions [42],
supplemented by 5 reactions involving electrons in strong electric fields [43]; (III) equations
of state for each of the components; (IV) relations for determining partial fluxes in the
diffusion–drift approximation; and (V) the equation for the electric potential obtained from
the condition of the conservation of the electric current. The basic equations are presented
in Appendix A. There is no accounting for turbulence in Plasmaero; only 2D simulation was
possible, which are drawbacks of Plasmaero. Additional information about the Plasmaero
package and used models could be found in the references [30,37,39].

4.2. Calculation Domain

The flow parameters in the calculations and the geometry of the problem were identical
to the experimental ones and the modeling using FlowVision (Figure 3): homogeneous
stationary gas flow with Mach 2, static pressure 22 kPa, and static temperature 157 K. The
solution area under consideration is a meridional section of the cylindrical flow area, in
which there are two coaxial conical electrodes. For the selected geometry, a parametric
study was performed. The discharge was simulated for several values of the discharge
current (1-3-5-7 A), and the voltage on the electrodes was automatically generated at each
time step, taking into account the instantaneous distributions of the parameters of the
working fluid in the entire area. The working medium was a mixture of 0.78N2 + 0.22O2 (as
well as the results of its chemical transformation). The initial (and incoming) homogeneous
background ionization was Ne = Ni = 1012 m−3.

A self-consistent solution of the above equations was performed at each moment
on a 347 × 106 cells structured grid with radial thickening near the symmetry axis and
longitudinal thickening in the vicinity of the tops of the conical electrodes (50–15 cells per
1 mm in radial direction near axis). For each current, the calculations were carried out until
a stationary solution, characterized by the voltage reaching a stationary value, required
about 200 µs for each current.

5. Results and Discussion
5.1. Featured Experiment Results

After the discharge ignition between the upstream and initiating electrodes, it was
blown down by the flow (such a discharge is transverse to the flow’s current path). However,
after the loop contacted the downstream electrode, the discharge became a straight line, and
the current and voltage of the discharge became stable and almost constant. The ignition
and stable operation of the discharge are presented in Figure 4.
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25 mm. a shows the results for the points that are 15 mm from the upstream electrodes at 

various currents. From the obtained data, it follows that the temperature slightly de-

creased along the discharge; with an increase in the discharge current, the temperature 

increased, and a qualitative estimate of the temperature in the discharge was obtained, 

which was 4000–7000 K, depending on the discharge current. When using a tungsten 

1 2 

Figure 4. Photos of the discharge channel in the supersonic flow: (1,2) launch and (3) stable operation.

The discharge operation in the supersonic airflow resulted in the formation of a cone
with heated gas around the discharge filament and a weak Mach cone in front of the
discharge. Typical schlieren images of the supersonic flow field with and without discharge
are presented in Figure 5. It is clearly seen that the cone with heated gas was slightly wider
than the visible discharge channel.
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Figure 5. Typical schlieren images of the supersonic flow field (top) without discharge and
(bottom) with discharge. 1—Discharge channel, 2—heated cone.

It is important to note that the current–voltage characteristics of the discharge obtained
as a result of the experiments were in very good quantitative agreement with the results
of the numerical simulations carried out (via FlowVision and Plasmaero packages), as
shown in Figure 6a; the current density profiles had minor differences between FlowVision
and Plasmaero. The current profiles obtained in the simulations were in good agreement
with the channel diameter determined from the current channel luminosity profile on a
high-speed video recording. In the experiment at 1 A, the diameter at a height of 5% of
the maximum intensity was 1.2 mm, and at 6 A, it was 1.8 mm, which are closer to the
diameters of the distributions presented in Figure 6b. The diameter of the thermal cone was
from 3 to 5.5 mm at a distance of 25 mm from the upstream electrode at the current variation,
which was also in good agreement with the simulation data. The results obtained make it
possible to conclude that the experiment and simulation are in satisfactory agreement, and
could allow for further comparisons and analyses of the data obtained.
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Figure 6. Voltage–current dependency (a) and comparison of current density profiles at x = 15 mm
for FlowVision and Plasmaero at 1, 3, and 5 A (b).

Temperatures in three positions of discharge filaments at different currents were ob-
tained in the experiment using comparisons of optical emission spectra of the second
positive nitrogen system N2(2+) with modeled spectra of known rotational and vibrational
temperatures (obtained using the Specair program). Thus, the temperature distributions
along the discharge for each discharge current were obtained for three points—5, 15, and
25 mm. Figure 7a shows the results for the points that are 15 mm from the upstream elec-
trodes at various currents. From the obtained data, it follows that the temperature slightly
decreased along the discharge; with an increase in the discharge current, the temperature
increased, and a qualitative estimate of the temperature in the discharge was obtained,
which was 4000–7000 K, depending on the discharge current. When using a tungsten
electrode, at a maximum current of 6 A near the tungsten electrode, metal lines were still
visible on the spectrum; despite this, it was possible to process the obtained spectra.
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Figure 7. Typical spectra of discharges at the current variation (a) and comparison of the experiments
and calculations by CFD temperature–current dependencies (b).

Comparisons of the obtained experimental dependencies of temperature on the cur-
rent with the results from simulations performed using FlowVision and Plasmaero are
shown in Figure 7b (for a point 15 mm from the electrode). The obtained temperatures have
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a significant quantitative difference. It is assumed that the resulting differences between the
simulation in Plasmaero and the experiment arise from the fact that the experimental spec-
trum was integral (averaged) along the observation line, while the maximum temperature
for a given section was used as the simulation result.

Knowing the distribution of the gas temperature Tg and reduced electric field E/N
along the radius in the discharge from the simulation in Plasmaero (see Figure 8), it
is possible to obtain a synthetic model integrated spectrum. The typical E/N for all
calculations did not exceed 100 Td (excluding the small area near the upstream electrode)
and was in the range of 40–80 Td at the axis. The electron temperature distribution was
calculated from the E/N distribution based on the Te(E/N) dependency from [44] obtained
by BOLSIG+ solver. The obtained Te was in good agreement with the experimental data
presented in [27,45]. Te(E/N) has an increase in the growth rate, starting with 60–70 Td,
which is why Te(r) for 1 A has a difference compared to the other distributions. The model
spectrum was built for each point of the radial distribution with a step of 0.1 mm with
known Tg and Te, after which, all of the obtained spectra were added. For the resulting
integrated spectrum, the closest model spectrum was selected to determine the “effective”
temperature. For example, at a 5 A current, with a maximal temperature of 9200 K, the
model integrated spectrum will correspond to a temperature of 7000 K, which agrees
well with the experiment. The difference in temperature data between Plasmaero and
FlowVision will be described in part 5.3.
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5.2. Featured FlowVision Results

As a result of modeling in FlowVision, two-dimensional distributions of such physical
quantities as temperature, current density, velocity, Mach number, density, and others were
obtained for each discharge current. The distributions of these quantities were considered
after the system reached a steady state, namely, when the voltage between the electrodes
(and, hence, the energy release of the direct current discharge) and the position of the
boundary of the thermal region of the discharge stabilized.

The distributions obtained in the simulations for different discharge currents were
qualitatively similar; therefore, a description of the simulation results for the 3 A DC dis-
charge will be given. In Figure 9, the temperature, velocity, Mach number, density, and
current density distributions are shown in the discharge region. The discharge current
created a high-temperature region surrounded by a supersonic (M = 2) flow. The figure
clearly shows that the thermal region was much larger than the current channel, which is
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consistent with the experimental data. Near the electrodes (especially the upstream elec-
trode), there was a strong increase in the current density and, as a result, in the temperature
relative to the values in the middle of the discharge.
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Figure 9. Calculation results in FlowVision for the 3 A current: (a) temperature distributions (top), as
well as density (bottom) and current density (bottom, in dashed contour); (b) Mach number (top)
and velocity modulus (bottom) distributions with velocity vector overlay, and (c) the near-electrode
area is enlarged to show the separation zone. Please note the different scales for the longitudinal and
radial axes.

In Figure 9a in the density field, it can be seen that a shock wave was formed in front
of the thermal cone. A more detailed view of the flow in the region of the electrodes can be
seen in Figure 9b,c, which shows the Mach number and velocity distributions. Regarding
the near-electrode region, it is worth noting the presence of a separation flow region near
the upstream electrode—the thermal region was an obstacle for the supersonic flow (as,
due to the high temperature, a significant subsonic zone was formed). On the other hand,
in the hot region between the electrodes, there was an increase in velocity caused by the
heating of the gas. Moreover, the downstream electrode had one more area where the speed
modulus grew. It was associated with a decrease in the cross-section of the subsonic flow
region by the electrode.

As various effects and significant gradients of parameters took place near the elec-
trodes, it made sense to consider and compare them with the obtained experimental data
of the values and radial distribution characteristics of the main part of the discharge (more
than 5 mm from the electrodes). That is why the main values, such as the maximum
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temperature in the discharge and the radial distribution characteristic of the discharge,
were considered in a section spaced 15 mm from the electrodes, i.e., in the middle of the
discharge gap.

For all obtained distributions of quantities, a good qualitative agreement was achieved
between the simulation results in FlowVision and Plasmaero. However, for the main
quantities, a quantitative agreement was obtained for the current density, except for the
temperature field, for which the difference in the hottest zone exceeded 2000 K, as shown
in Figure 10.
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Figure 10. The 2D distribution of temperature (a) and current density (b) at I = 5 A obtained in
FlowVision (top) and Plasmaero (bottom).

5.3. Featured Plasmaero Results

Qualitatively, the gas–dynamic flow fields in Plasmaero were similar to FlowVision
and the experiments. The current heated the gas between the electrodes due to the Joule
heat, the flow was decelerated and mainly flowed around this heated area, and a separation
zone appeared at the left electrode. The gas velocity between the electrodes near the axis
was higher than the velocity of the incoming flow, but it was still subsonic on the axis
between the electrodes.

The difference in temperature data between Plasmaero and FlowVision can be ex-
plained by the use of a highly simplified equilibrium model of air [35] in FlowVision, where
the heat capacity and thermal conductivity were given as functions of temperature. The
heat capacity increased strongly with temperatures above 5000 K, thus simulating the cost
of dissociating molecular nitrogen N2. In FlowVision, this process was immediate; in Plas-
maero, it was important how long the molecular nitrogen stayed in the hot zone to obtain
the dissociation degree. An additional simulation in Plasmaero was performed using the
0D approach with a fixed temperature T = 8000 K and a density of 0.01 kg/m3 for a mixture
of 0.78N2 + 0.22O2. It was shown that decreasing the N2 mole fraction from 0.78 to 0.2 took
20 µs (see Figure A1); however, in our 2D simulations of axisymmetric discharge, the time
spent by N2 in an area with a high temperature was 25–50 µs, depending on the simulation
case; the density of the axis was 0.004–0.008 kg/m3. The longitudinal distributions of N2
and the N mole fractions at r = 0.7 mm are presented in Figure 11, supplemented with a
velocity profile to demonstrate the dynamics of the N2 dissociation in the discharge area.
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In the gap between the electrodes, the electrical field decreased monotonically (except
for the regions near the electrodes) and decreased with the increasing current, as shown
in Figure 11b. It can be seen that, in terms of electrical characteristics, mode 1A was very
different from the other three cases. A higher field resulted in a higher reduced field. In this
case, because of the function of the electron temperature from the reduced field changes, the
growth rate starting from the reduced field, 60–70 Td, which ultimately gave the maximum
electron temperature of 19,000 K, was compared with 15,000 K at the other currents (see
Figure 8).

The key feature that distinguishes Plasmaero from FlowVision for combustion prob-
lems is the ability to use detailed plasma–chemical kinetics in conjunction with gas dynam-
ics. The main components in the discharge zone calculated using Plasmaero are shown in
Figure 12. It can be seen from the presented distributions that molecular oxygen almost
completely dissociated, while the amount of molecular nitrogen decreased insignificantly.
The main ion was the NO+ ion, which also indicated that the chemical equilibrium was not
reached for this temperature. In the above-discussed 0D calculation, the mole fraction of
O+ and N+ ions exceeded the mole fraction of NO+ after 40 µs and 60 µs, respectively (see
Figure A1). It is also important to note that in the 0D calculation, the mole fraction of atomic
oxygen increased rapidly, but gradually decreased over time as the amount of atomic
nitrogen increased. Thus, the non-equilibrium nature of the plasma was an advantage,
retaining a higher mole fraction of atomic oxygen.
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Despite the fact that only air kinetics, without fuel, were used in the axisymmetric
calculation, it was still possible to estimate the potential of the considered discharge
for combustion applications. Nonequilibrium plasma could initiate the combustion of a
hydrocarbon mixture in two ways: through heating and the creation of active radicals,
which significantly accelerate combustion chain reactions. In the chosen scheme of air
kinetics, there is a key radical used for accelerating combustion–atomic oxygen. Preliminary
estimates made in a zero-dimensional calculation for a mixture of air with ethylene showed
that at mixture temperatures of 500–1000 K and an oxygen molar fraction of 0.001–0.1, there
was a significant acceleration of reactions, as well as the possibility of ignition during the
‘presence time’ of the mixture in a combustion chamber. It is also worth noting that in the
presence of hydrocarbon fuel, atomic oxygen quickly forms intermediate compounds with
it, and does not recombine into a molecule when the temperature in the flow decreases
after passing through the discharge zone. Figure 13 shows the 2D distributions of the mole
fraction of O atoms and temperature, and radial distributions for a cross-section of 45 mm.
It can be seen that O atoms were present in a noticeable amount, including where heating
was insufficient for ignition, but there was no increase in the molar fraction of oxygen with
an increase in the current over 3 A due to full dissociation of O2.
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6. Conclusions

The local and integral characteristics of a direct current’s electric discharge in a super-
sonic flow (Mach number, M = 2) located longitudinally to the flow between the coaxial
electrodes were experimentally considered, using simulations via FlowVision and Plas-
maero. It was shown that the average discharge temperature increased fast to ~5500 K at
1 A, and then rose slower to ~7500 K at 7 A due to N2 dissociation, which increased the
effective heat capacity and thermal conductivity of the mixture. However, the discharge
plasma was chemically nonequilibrium, which could provide some benefits for combus-
tion enhancement. Thus, a significant mole fraction of atomic oxygen is formed in the
discharge and persists after the mixture leaves the discharge region. We can conclude that
the increase in the discharge current of more than 3 A at the discussed flow parameters
(M = 2, Tg = 170 K, Pst = 22 kPa), in terms of plasma chemistry, should have no significant
additional effects on combustion because the molecular oxygen is already dissociated.

The results obtained by the three methods are in good agreement with each other.
All variances are explained by non-equilibrium and contractions of the discharge. For
contracted filamentary discharges at the described parameters of 1–7 A, the temperature
measured by emission spectroscopy should be perceived as average. The comparison
between the simulation and experiment was very important due to the validations of both
CFD codes for plasma aerodynamics tasks. Both software packages can be further tested to
simulate plasma-assisted combustion. FlowVision is of interest because it allows simulating
the electrical discharge in a supersonic flow in a three-dimensional approach accompanied
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by simplified combustion chemistry. Plasmaero is of interest due to the detailed plasma
chemistry available for discharge and plasma-assisted combustion simulation in a high-
speed flow. The use of Plasmaero is limited by 2D or an axisymmetric case, but it could be
used for tests of reduced chemical models for further use for plasma-assisted combustion in
FlowVision. In this paper, we recognize the results obtained in Plasmaero as more accurate
and more complete due to its multi-reaction chemistry; however, the results in FlowVision
were obtained much faster due to the execution of calculations in parallel mode. This
approach can also be applied to solve three-dimensional problems.
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Appendix A

Basic equations of the Plasmaero CFD model.

∂ρ

∂t
+∇(ρU) = 0

∂ρU
∂t

+∇(ρU ·U) +∇τ = −∂P/∂r

∂ρe0

∂t
+∇

(
ρe0 + P

)
U) +∇q +∇(Uτ) = jE

∂ρi
∂t

+∇(ρi ·U) +∇Γi = ωi

∇j = 0

Fluxes
Γi = −ρDi

∂Yi
∂r

q− λ
∂T
∂r

+ ∑
i 6=e

hiΓi

τij =
2
3

ηδij∇U− η(
∂ui
∂xj

+
∂uj

∂xi
)

j = σE; E = −∂φ

∂r
State equations

e0 = e +
U2

2
; P = ∑ ρiRiT

e =
N1

∑
i=1

e0
i +

Nv

∑
v=1

ev +
N+

1

∑
i=1

e1
i +

N+
2

∑
i=1

e2
i + ee; ρ = ∑ ρi; ci =

ρi
Wi
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Chemical kinetics

ωi = Wi

Nr

∑
r=1

[
ν
′′
i,r − ν′i,r

]
·
(

k f r

N

∏
l=1

c
ν′l,r
l − kbr

N

∏
l=1

c
ν
′′
l,r

l

)

k f r = a · Tb · exp(−Ea/T); k f r = a · Te
b · exp(−Ea/Te)

Electrophysics

σ = eneµe; µe = e
τe

me
; τe = ν−1

e ; νe = ∑ νej; νej = njueQej
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